Классификация и структура различных полифенолов

О-гликозиды при действии разбавленных минеральных кислот и ферментов легко гидролизуются до агликона и углеводного остатка. С-гликозиды с трудом расщепляются под действием концентрированных кислот (HCl или СН3СООН) или их смесей при длительном нагревании.

Под влиянием света и щелочей легко окисляются, изомеризуются, разрушаются. При нагревании до температуры 200°С эти соединения возгоняются, а при более высокой температуре разрушаются.

К флавоноидам относятся производные халкона, катехины, антоцианидины, ауроны. Катехины относятся к полифенолам, входят в состав конденсированных дубильных веществ. Катехины представляют собой наиболее восстановленные флавоноидные соединения. Многие красные и синие окраски цветков с различными оттенками обусловлены присутствием антоцианидинов. В зависимости от рН среды окраска цветков меняется. В кислотной среде они образуют розовую, красную окраску, в щелочной среде - от голубой до синей с разными оттенками. Ауроны имеют разнообразную структуру. Они встречаются в растениях семейства астровых. В растениях присутствуют в форме гликозидов.

Химические свойства обусловлены особенностью строения флавоноидов: наличием арматического и пиронового колец, функциональных групп.

. Гликозиды подвергаются ферментативному и кислотному гидролизу до агликонов и cахаров. O-гликозиды гидролизуются легко, С-гликозиды только в жестких условиях смесью Килиани (смесь концентрированных хлористоводородной и уксусной кислот).

. Благодаря кольцам А и В флавоноиды способны:

образовывать комплексные соединения с солями металлов (железа, алюминия, циркония). С солями железа в зависимости от количества гидроксильных групп соли от зеленой, сине до коричневой окраски, с солями алюминия - желтой, с желто-зеленой флюоресценцией;

вступать в реакцию азосочетания с солями диазония с образованием азокрасителя.

. Флавоноиды, содержащие пироновый цикл (флавоны и флавонолы):

способны восстанавливаться атомарным (свободным) водородом в кислой среде, полученным по реакции взаимодействия кислоты с металлическим магнием или цинком до антоцинидинов (проба Синода или цинидиновая проба);

растворяться в щелочах с образованием растворимых в воде фенолятов

. Флавоноиды, содержащие пирановый цикл (катехины, лейкоантоцианидины) способны легко окисляться до производных флавона и флавонола.

. Флавоноиды при сплавлении в жестких условиях со щелочью распадаются на составные части, что используется для установления структуры.

Свободно-радикальное окисление является цепным самоиндуцирующимся процессом непосредственного переноса кислорода на субстрат с образованием перекисей, альдегидов, кетонов. Чаще всего инициируют cвободно-радикальное окисление так называемые активные формы кислорода, такие, как перекись водорода, супероксидный анион, гидроксильный радикал и т.д. Такие молекулы стремятся отнять электрон у прочих молекул, например фосфолипидов, вследствие чего "пострадавшая" молекула сама становится свободным радикалом - развивается разрушительная цепная реакция, губительно действующая на живую клетку.

Для живых клеток наибольшую опасность представляет окисление полиненасыщенных жирных кислот - перекисное окисление липидов (ПОЛ). В реакциях ПОЛ образуется большое количество липидных гидроперекисей, которые обладают высокой реакционной способностью и оказывают мощное повреждающее действие на клетку. В биологических системах присутствуют антиоксиданты - вещества, способные ингибировать процессы свободно-радикального окисления.

Флавоноиды растительного происхождения обладают выраженной антиоксидантной активностью и способностью ингибировать свободнорадикальные процессы в клетках на 3 различных стадиях: инициации, путем связывания О2 на стадии пероксидного окисления липидов (ПОЛ) реакцией как с пероксидным, так и с липидпероксидным радикалом и при формировании ОН, вероятно, путем хелатирования ионов железа.

Согласно результатам многочисленных экспериментальных исследований в водных системах, наиболее важными для антирадикальной активности структурными элементами молекул флавоноидов являются две ОН-группы в положениях С-31 и C-41; двойная связь между 2 и 3 атомами углерода, Желательно совместно с карбонильной группой в положении C-4; ОН-группы в положениях С-3 и С-5 совместно с карбонильной группой.

Структурный анализ и экспериментальные данные свидетельствуют о прямой взаимосвязи между антиоксидантной активностью флавонолов и количеством фенольных ОН-групп в их молекулах. В молекулах флавоноидов, имеющих 5 гидроксильных групп, ОН-группа в положении C-41 представляет собой наиболее предпочтительную мишень для радикальной атаки, при этом наличие ОН-группы у соседнего атома углерода С-31 (катехоловая структура) облегчает отрыв атома водорода. Между соседними гидроксилами кольца В образуются водородные связи, поэтому соединения с такими структурами характеризуются низким окислительным потенциалом и относительно легко образуют радикалы. Кроме того, присутствие орто-дигидроксильной структуры приводит к большой делокализации неспаренного электрона и повышает стабильность феноксильного радикала.

Перейти на страницу: 1 2 3

Биологические препараты

Биологические препараты - группа медицинских продуктов биологического происхождения, в том числе вакцины, препараты крови, аллергены, соматические клетки, ткани, рекомбинантные белки.  Смотреть...

Антибиотики

Большинство ученых подразумевает под антибиотиками не только антибактериальные вещества, образуемые микроорганизмами, но и соединения, обладающие антибактериальной активностью, выделенные из животных тканей и высших растений.  Смотреть...