Тканевая терапия
Тканевая инженерия является основным инструментом экзогенного управления молекулярными процессами в разных тканях. Разработка и внедрение ее методов стали необходимыми для понимания тонких механизмов клеточной дифференцировки, пролиферации и миграции, а также функционирования тканей.
Отметим, что сначала в молекулярной медицине появились возможности для понимания механизмов, регулирующих метаболизм внеклеточного матрикса. При этом учитывались особенности межклеточных и клеточно-матриксных взаимодействий и их роль в поддержании гомеостаза и целостности ткани. И именно эти особенности стали основой для разработки комплексных клеточных биоматриксных систем вне организма - тканевых эквивалентов. Благодаря параллельному развитию молекулярной медицины, биотехнологий, химии полимеров и разработке инженерных принципов конструирования тканевых эквивалентов удалось создать трехмерные функциональные анатомические единицы, обусловившие появление и развитие тканевой инженерии, использующей для замены поврежденных (пораженных) тканей и органов их инженерные аналоги.
Новые инженерные конструкции построены с учетом принципов и методов, позволяющих восстанавливать, поддерживать и улучшать функции пораженных тканей и органов.
Показано, что новая инженерная ткань хорошо интегрируется в организм пациента, осуществляя в нем постоянное специфическое лечение. Сегодня при создании новых инженерных тканей применяется множество подходов. Рассмотрим основные из них.
Первый подход - это дизайн и выращивание ткани in vitro с последующей ее имплантацией для восстановления или замены поврежденной ткани (например, пересадка компонентов кожи при лечении ожогов или введение кожных эквивалентов, восстанавливающих эпителиально-стромальные дефекты с помощью добавления культивированных фибробластов дермы, растущих в трехмерном коллагеновом геле).
Стандартной клеточной моделью кожи человека служит двухмерная клеточная система, представленная дермальным эквивалентом (это кожные фибробласты, растущие в трехмерном коллагеновом геле) и эпидермальным эквивалентом (это кератиноциты, дифференцирующиеся на поверхности дермального эквивалента).
Данная модель широко используется в биологии, дерматологии (лечение инфекционно-аллергических болезней кожи), косметологии (апробация косметических средств), офтальмологии (реконструкция роговицы глаза для восстановления специализированного покрова), травматологии и хирургии (заживление ран), трансплантации (пересадка кожи), фармакологии (доклиническая апробация лекарств).
Второй подход - это имплантация клеток, содержащих молекулы и белковые факторы, индуцирующие репарацию (см. главу 11) или регенерацию функций поврежденной ткани.
Этот подход основан на технике выделения клеток, добавлении к ним определенных сигнальных молекул (подобных факторам роста) и переносе этих клеток в биоматериалы, обеспечивающие регенерацию тканей (например, добавление стимуляторов роста костной ткани при болезнях периодонта в стоматологии).
Третий подход - это использование внутреннего потенциала тканей и органов для восстановления поврежденных функций. Этот подход основан на технике выделения СК, которые имплантируются пациенту либо непосредственно в суспензии, либо в структурном матриксе, либо после преобразования in vitro.
Четвертый подход - это метод культивирования клеток на микроносителях. Данный метод был разработан с целью оптимизации (модификации) технологии выращивания клеток и увеличения сроков жизни трансплантата (инженерной ткани). К микроносителям относятся коллагеновые микросферы, поверхности пленок разного биохимического состава, пересаживаемые на поврежденные участки кожи.
В настоящее время одной из трудноразрешимых проблем тканевой инженерии является ограниченность выбора субстрата (клеточного источника) из, казалось бы, широкого спектра материалов, перспективных для тканевой инженерии.
Среди таких материалов:
• биосовместимые и биодеградируемые (биорезорбируемые) синтетические полимеры;
• макромолекулярные полимеры, например гиалуроновая кислота, стабилизированная бензиловой этерификацией;
• модифицированные полунатальные природные соединения;
• природные полимеры (гликопротеиды, полисахариды);
• целостные ткани для восстановления хряща и роговицы. Следует отметить, что самым доступным клеточным субстратом для человека оказалась богатая белками плазма крови, например адгезивный субстрат из тромбина и фибриногена, стабилизированный протеазным ингибитором - апротинином.
Другая трудная проблема тканевой инженерии состоит в том, что применение того или иного подхода имеет свои «за» и «против». Например, на безусловную неоспоримость выбора аутогенного источника указывает отсутствие на него иммунной реакции организма, хотя при этом возможен риск инфицирования.